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Overhangs in interface growth and ground-state paths
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We report on numerical investigations concerning the statistics of the ground-state path in a disordered
medium. For a distribution of energies having a positive support, these paths are almost directed, even though
some overhangs are present. Computing both the directed minimum energy path and the unconstrained ground-
state paths allows us to understand whether the two problems belong to the same universality class. We present
numerical results in dimensions up de=-6=5+1, which suggests that both problems are in the same uni-
versality class[S1063-651X%98)01404-4

PACS numbe(s): 05.40:+], 64.60.Ht, 05.70.Ln, 68.35.Fx

The Kardar-Parisi-Zhan@KPZ) equation[1] is probably 4
the simplest nonlinear stochastic process. As such, it has be- Ep= > 0
come a cornerstone of statistical physics in the last decade. =0
Its fame is also due to the concept of universality, which has
led to grouping a large number of stochastic processes in thiee the energy of path={x,(0)=0, ... x,(#)=A}. Then
same KPZ universality clasg2]. Universality is usually
established via perturbative methods close to an upper criti- Ta= min E.=E
cal dimensionality. It was soon realized, however, that with Pixp(0)=0xy(/)=A
perturbative methods one cannot go very far since, in renor-

malizqtion group jargon, the physics of the K.PZ eguation_ iSThe problem is then to find the path with the smallest
described .by a nonperturb{:\twe strong (;oupl|ng fixed pOIntenergyE , i.e., the ground-state pati&SP. Clearly, since
The paradwm of a KPZ umversahty,. which is mostly b""SEdwaiting ti?nes are positiveg,>0 and the minimum will most

rI\kely be realized on the shortest possible paths, i.e. on di-
.rected paths. For RSOS growth, only directed paths are al-

£ di ional vsi ld b | i at a st ?owed, since overhangs are forbidden. This problem is than
of dimensional analysis, could be relevant at a strong CoUz, 04 1 that of finding the path with smallest energ¥y
pling nonperturbative fixed point. Indeed evidence of non-

universality was found in an infinite-dimensional limit of a among all directed paths. It was shoy] that for the Eden

modified KPZ equatiorf4]. More recently, nonuniversalit model the correct distribution ok, is the exponential
) 4 Sl € recently, ; Y P(e) =exp(—e€). With similar arguments, one can show that
in the change of the disorder distribution was discovébdd | | hi val di d vol ith

In this work, universality with respect to a different bo yn(;Jcl ej‘.r g_rt())w_t 'S equlva ent to directed polymers with a
change in the model is questioned. From the point of view oP"T‘O a i Istri ;ltlonP(e)— p(;(e—hl)Jr(l— p)a(e). N(ojn_—
interface growth, the KPZ equation can be deriy8fias a universality with respect to the change B(e) reported in
description of several “microscopic” models such as theRef' [5] already suggests that these models do not belong to

Eden mode[6] and restricted solid on solilRSOS models _the same qmvers_allty _class. Here we wish to address the
E?sue of universality with respect to the formation of over-

g-

[7]. In the first model the interface has overhangs, whereas i ngs. For this reason we shall fiXe) once and for all
the second these are forbidden. The irrelevance of overhan gs-. , '
Ince we found huge crossovers, everDin-1+ 1, for the

has been proven numerically b=1+1 dimensions. No . S S o :
such analysis has been carried out in higher dimension?.)(ponem""1I dlstr|bgt|on, and bad St"’?“St_'CS _for the bimodal
one, here we consider the uniform distributi®e) =1 for

Clearly in high dimensions overhanging configurations are 011 which is al ient f th ical point
entropically favored. Therefore it is important to address thisgfev[ie;/v], which 1S aiso convenient from the numerical poin
issue. It was first realized in Ref8] that interface growth . .

models map into the problem of polymers in random media The directed ground-state path was found via a standard

Given a random medium, specified in terms of random ‘,en_transfer matrix methog2] in the (1,1, . . . 1)direction,
ergies” e, defined on each site<=(xq,...xXp) of a

D-dimensional lattice, the problem consists of finding the E(xt+1)= min [E(y,t)]+e, )
path of lowest total energy between two points. The mapping (yx)lyl=t

is based on the fact tha, can be interpreted as waiting

times for the occupation of site once at least one of its Where(y,x) denotes the set of nearest neighborscoind
neighbors has been reached by the growing cluster. Thenthe minimum is restricted to points at a longitudinal distance
given siteA will be reached by the growth process starting atly| =t (|y|==",y; is defined as the sum of the components
x=0, at a timeT 5, which is the smallest sum of the waiting of y). The directed path to the poiAtis obtained by a usual
times along all possible paths from 0 #£0 More precisely, trace back procedurg?] on the energy landscagg(x, |x|).

let Equation(1) is iterated only on the hyperplane/=t+1.
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A transfer matrix method also exists for the nondirected 1.0F
path. Starting from an energy configurati&x,0)=c« for
x#0 andE(0,0)=0, and iterating the equation

E(x,t+1)=min[E(y,t)]+ e, (2 0.5
(y.x)

on all pointsx of the lattice, one clearly obtains the nondi-
rected GS path. Equatig®) has a simple interpretation as a 0.0
transfer matrix. Indeed if is considered as a furth&+ 1st

“time” direction of the lattice, Eq.(2) can be considered as
the transfer matrix in the “time” direction. In this aug-
mented space, the problem corresponds to directed polymers 0.5
in a columnar disordef9,2]. Indeed, the disorder depends
only onx and not on “time.” The GS energy is then ob-
tained asEy(/) =minE(At). A traceback procedure is also

1n (8E)

possible in this case. Instead of Eg), however, one has to or
iterate
E(x,t+1)=min{min[E(y,t)]+e,,E(x,1)}, ©) a5k | | | | | |
) 2 3 4 5 6 7
so that at each site the energyx,t) can only decrease with 1n (L)

time. In particular, once the GS path from Oxtdas arrived,
the energyE(x,t) will not change anymore. So the iteration
of Eg. (3) identifies the energy landscape of GS paths to eac

point X of the lattice. On this landscape it is easy to traceextensive nonfluctuating part plus a subextensive fluctuation

back[2] the GS path from O taA. l_\lote_that equal energy contribution. A second quantity one can consider is the dis-
hypersurfaqes on this landscape identify the surface of thﬁlacemenf(t)=|xp(t)|L of the path in the transverse direc-
corresponding growth model. . tion, where |x|, is the distance fromx to the point
Equatlonsé(l)_ and(2) were iterated numerically on a hy- x© = (|x|/D,|x|/D, . .. |x|/D). Fort</ one hast(t)~t*
percube ofL" sites. The origin 6 (0,0,...,0) was chosen at where agair,u=d ,or g ,The exponentss,, and v, are usd-
one of the vertices of the lattice, whereas the pdinivas ally expected to obey- the relation. =2y —1. which fol-

taken at the opposite ver_teﬂE: (L=1L=1,... L=1). The | s from Galilean invariance in the noisy Burgers equation
length of directed paths i€=d=*(L—1). Finally we consid- 11]

ered closed boundary conditions in order to consider onI)L
paths which cross the entire lattice. The reason for the choicgl
of this peculiar geometry is that in this way one avoids
anysotropy effect$10] induced by the discrete lattice. The
statistics is based oN=2000 realizations of the disorder.
For each realization directed and nondirected paths we

FIG. 1. Scaling of the fluctuationsEy (O) and 6Eq (+) of the
gnergy of the ground-state paths for dimensibns2, . .. ,6.

Universality, in the present context would correspond to

e statemend 4= wy andvy= vy . Double logarithmic plots

of the fluctuation of the path energies are shown in Figure 1.
Our numerical accuracy did not allow for a very precise

revaluation of the exponents. They, however, clearly show no
gign of deviation from universality. The values of the expo-

found. . )

The ground-state pathis, in general, not directed and its nentsw(D) and »(D) are listed in Table |.
length ||g|| will be larger than that of the directed one oF 3 10
(Id[[=7). Since every step taken in the negative direction a) XX XXX
needs an extra step in the positive one, we shall set %XX + :n o
lgll=7+2n, wheren then counts the number of steps in o3 x * e, 1°e
negative directions. Clearly cannot grow faster thaw’, . D=4 o8
since this would require an average energy per siteg,on Bzg P PN

which is vanishingly small ag’—~. We indeed found that * . . 4
n// increases wittD, and it ranges from 0.6% iD=2 to N v e b v
6% in D=6 [see Fig. 2a)]. . ) qes
The GSP energies satisfy, in general, the scaling behav- S’ e
iorg 2] o + D=3 o,
1 ® D=4
Eo(/) =€/ +ag” "X, (@) o bee
o 1 1 1 1 14 0.0
Eg(/) = eg/"' ag/ngg , (5) 00 02 (1).;% o6 08 00 02 ?7&' 06 08
where €, and a, (a=g,d) are numerical coefficients,  FIG. 2. (a) Percentage=n//"x 100 of nondirected steps on the

whereasX,, is a random variable which depends on the realground-state path for different sizesand dimension®. (b) Av-
ization of the energy landscape. In other words, Edsand  erage overlagm) between the pathg andg. Both z and(m) have
(5) assume that the energies of ground-state paths have agen plotted vs E(/) for convenience.
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TABLE |. Energy fluctuation and wandering exponents as athe regime/>/ . due to resouces limitations. Our numerical
function of D. results show that the correlation between the energies of the

two paths is almost constantih=1, and decreases in higher

d Lmax “9 @d Vo= Vd dimensions. Fod=3 it seems to follow the same curve.

2 2046 0.32(1) 0.33(1) 0.65(1) The same effect also manifests itself in the overlap distri-
3 381 0.18(1) 0.18(1) 0.59(1) bution P (m) for paths of size”. Here the overlapn is the

4 252 0.08(1) 0.09(1) 0.54(1) fraction of sites which the directed pathshares with the

5 155 0.04(2) 0.04(1) 0.51(1) nondirected patly. P, (m) shows a clear size dependence:
6 90 0.03(3) 0.03(2) 0.50(1) for small 7 it has a peak atn=1, whereas ag” increases it

becomes broader and broader. Figuf® 8hows the average
overlap(m) vs 1/ for different values of/ andD. In di-

It has to be pointed out, however, that finite size effectsensionsD >3 (m) seems to converge to zero for large
do occur. In order to address this point, we note that(i_e. as/ —x).

Eq(/)<Eq4(~), and from Egs.(4) and (5 we expect that
Eq(/)—E4(/) /. Each of these energies has quctuationsd
of order/“. The fluctuations oEy and E4 will clearly be
correlated if SEg+ 0E4>E4—Eg. This suggests the pres-
ence of finite size effects for scales

In order to test the effect of correlation betwegrandd
ue to small size, we considered the scalinggBfand &(t)
considering only paths with overlap in an interval
[m,u+Au]. However, no systematic dependence of
(SE|me[u,u+Au]) was detected. This suggests that even
11— w) in the absence of the spurious correlation arising from small
sizes/ </, the scaling of the pathg andd remains the
same, and it therefore supports universality. Even so, the
possibility of nonuniversal behavior cannot be excluded for

~ [ag+a
(<=

éd_Eg

Only for /> /. can the two paths possibly be statistically Py
independent. Actually our numerical work could not acces{ cer
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