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Overhangs in interface growth and ground-state paths
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Institut de Physique The´orique, Universite´ de Fribourg, CH-1700 Fribourg, Switzerland

~Received 16 October 1997!

We report on numerical investigations concerning the statistics of the ground-state path in a disordered
medium. For a distribution of energies having a positive support, these paths are almost directed, even though
some overhangs are present. Computing both the directed minimum energy path and the unconstrained ground-
state paths allows us to understand whether the two problems belong to the same universality class. We present
numerical results in dimensions up tod565511, which suggests that both problems are in the same uni-
versality class.@S1063-651X~98!01404-4#

PACS number~s!: 05.40.1j, 64.60.Ht, 05.70.Ln, 68.35.Fx
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The Kardar-Parisi-Zhang~KPZ! equation@1# is probably
the simplest nonlinear stochastic process. As such, it has
come a cornerstone of statistical physics in the last dec
Its fame is also due to the concept of universality, which h
led to grouping a large number of stochastic processes in
same KPZ universality class@2#. Universality is usually
established via perturbative methods close to an upper c
cal dimensionality. It was soon realized, however, that w
perturbative methods one cannot go very far since, in ren
malization group jargon, the physics of the KPZ equation
described by a nonperturbative strong coupling fixed po
The paradigm of a KPZ universality, which is mostly bas
on numerical results in low dimensions, has recently b
questioned. In particular, in Ref.@3# it was suggested tha
higher order nonlinear terms, usually ruled out on the ba
of dimensional analysis, could be relevant at a strong c
pling nonperturbative fixed point. Indeed evidence of no
universality was found in an infinite-dimensional limit of
modified KPZ equation@4#. More recently, nonuniversality
in the change of the disorder distribution was discovered@5#.

In this work, universality with respect to a differen
change in the model is questioned. From the point of view
interface growth, the KPZ equation can be derived@3# as a
description of several ‘‘microscopic’’ models such as t
Eden model@6# and restricted solid on solid~RSOS! models
@7#. In the first model the interface has overhangs, wherea
the second these are forbidden. The irrelevance of overh
has been proven numerically inD5111 dimensions. No
such analysis has been carried out in higher dimensi
Clearly in high dimensions overhanging configurations
entropically favored. Therefore it is important to address t
issue. It was first realized in Ref.@8# that interface growth
models map into the problem of polymers in random med
Given a random medium, specified in terms of random ‘‘e
ergies’’ ex defined on each sitex5(x1 , . . . ,xD) of a
D-dimensional lattice, the problem consists of finding t
path of lowest total energy between two points. The mapp
is based on the fact thatex can be interpreted as waitin
times for the occupation of sitex once at least one of its
neighbors has been reached by the growing cluster. Th
given siteA will be reached by the growth process starting
x50, at a timeTA , which is the smallest sum of the waitin
times along all possible paths from 0 toA. More precisely,
let
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be the energy of pathp5$xp(0)50, . . . ,xp(l )5A%. Then

TA5 min
p:xp~0!50 xp~ l !5A

Ep[Eg .

The problem is then to find the pathg with the smallest
energyEg , i.e., the ground-state path~GSP!. Clearly, since
waiting times are positive,ex.0 and the minimum will most
likely be realized on the shortest possible paths, i.e. on
rected paths. For RSOS growth, only directed paths are
lowed, since overhangs are forbidden. This problem is t
related to that of finding the pathd with smallest energyEd
among all directed paths. It was shown@8# that for the Eden
model the correct distribution ofex is the exponential
P(e)5exp(2e). With similar arguments, one can show th
polynuclear growth is equivalent to directed polymers with
bimodal distributionP(e)5pd(e21)1(12p)d(e). Non-
universality with respect to the change ofP(e) reported in
Ref. @5# already suggests that these models do not belon
the same universality class. Here we wish to address
issue of universality with respect to the formation of ove
hangs. For this reason we shall fixP(e) once and for all.
Since we found huge crossovers, even inD5111, for the
exponential distribution, and bad statistics for the bimo
one, here we consider the uniform distributionP(e)51 for
eP@0,1#, which is also convenient from the numerical poi
of view.

The directed ground-state path was found via a stand
transfer matrix method@2# in the (1,1, . . . ,1)direction,

E~x,t11!5 min
^y,x&,uyu5t

@E~y,t !#1ex , ~1!

where ^y,x& denotes the set of nearest neighbors ofx, and
the minimum is restricted to points at a longitudinal distan
uyu5t (uyu5( i 51

D yi is defined as the sum of the componen
of y). The directed path to the pointA is obtained by a usua
trace back procedure@2# on the energy landscapeE(x,uxu).
Equation~1! is iterated only on the hyperplaneuxu5t11.
4814 © 1998 The American Physical Society
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A transfer matrix method also exists for the nondirec
path. Starting from an energy configurationE(x,0)5` for
xÞ0 andE(0,0)50, and iterating the equation

E~x,t11!5min
^y,x&

@E~y,t !#1ex ~2!

on all pointsx of the lattice, one clearly obtains the nond
rected GS path. Equation~2! has a simple interpretation as
transfer matrix. Indeed ift is considered as a furtherD11st
‘‘time’’ direction of the lattice, Eq.~2! can be considered a
the transfer matrix in the ‘‘time’’ direction. In this aug
mented space, the problem corresponds to directed polym
in a columnar disorder@9,2#. Indeed, the disorder depend
only on x and not on ‘‘time.’’ The GS energy is then ob
tained asEg(l )5mintE(A,t). A traceback procedure is als
possible in this case. Instead of Eq.~2!, however, one has to
iterate

E~x,t11!5min$min
^y,x&

@E~y,t !#1ex ,E~x,t !%, ~3!

so that at each site the energyE(x,t) can only decrease with
time. In particular, once the GS path from 0 tox has arrived,
the energyE(x,t) will not change anymore. So the iteratio
of Eq. ~3! identifies the energy landscape of GS paths to e
point x of the lattice. On this landscape it is easy to tra
back @2# the GS path from 0 toA. Note that equal energy
hypersurfaces on this landscape identify the surface of
corresponding growth model.

Equations~1! and ~2! were iterated numerically on a hy
percube ofLD sites. The origin 05(0,0,...,0) was chosen a
one of the vertices of the lattice, whereas the pointA was
taken at the opposite vertexA5(L21,L21, . . . ,L21). The
length of directed paths isl 5d* (L21). Finally we consid-
ered closed boundary conditions in order to consider o
paths which cross the entire lattice. The reason for the ch
of this peculiar geometry is that in this way one avoi
anysotropy effects@10# induced by the discrete lattice. Th
statistics is based onN.2000 realizations of the disorde
For each realization directed and nondirected paths w
found.

The ground-state pathg is, in general, not directed and it
length uuguu will be larger than that of the directed on
~idi5l ). Since every step taken in the negative direct
needs an extra step in the positive one, we shall
igi5l 12n, wheren then counts the number of steps
negative directions. Clearlyn cannot grow faster thanl ,
since this would require an average energy per site, ong,
which is vanishingly small asl →`. We indeed found tha
n/l increases withD, and it ranges from 0.6% inD52 to
6% in D56 @see Fig. 2~a!#.

The GSP energies satisfy, in general, the scaling beh
iors@2#

Ed~ l !5edl 1adl vdXd , ~4!

Eg~ l !5egl 1agl vgXg , ~5!

where ea and aa (a5g,d) are numerical coefficients
whereasXa is a random variable which depends on the re
ization of the energy landscape. In other words, Eqs.~4! and
~5! assume that the energies of ground-state paths hav
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extensive nonfluctuating part plus a subextensive fluctua
contribution. A second quantity one can consider is the d
placementj(t)5uxp(t)u' of the path in the transverse direc
tion, where uxu' is the distance fromx to the point
x(0)5(uxu/D,uxu/D, . . . ,uxu/D). For t!l one hasj(t);tna,
where againa5d or g. The exponentsva andna are usu-
ally expected to obey the relationva52na21, which fol-
lows from Galilean invariance in the noisy Burgers equat
@11#.

Universality, in the present context would correspond
the statementvd5vg andnd5ng . Double logarithmic plots
of the fluctuation of the path energies are shown in Figure
Our numerical accuracy did not allow for a very preci
evaluation of the exponents. They, however, clearly show
sign of deviation from universality. The values of the exp
nentsv(D) andn(D) are listed in Table I.

FIG. 1. Scaling of the fluctuationsdEd (s) anddEg (1) of the
energy of the ground-state paths for dimensionsD52, . . . ,6.

FIG. 2. ~a! Percentagez5n/l 3100 of nondirected steps on th
ground-state path for different sizesl and dimensionsD. ~b! Av-
erage overlap̂m& between the pathsd andg. Both z and^m& have
been plotted vs 1/j(l ) for convenience.
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It has to be pointed out, however, that finite size effe
do occur. In order to address this point, we note t
Eg(l )<Ed(l ), and from Eqs.~4! and ~5! we expect that
Ed(l )2Eg(l )}l . Each of these energies has fluctuatio
of order l v. The fluctuations ofEg and Ed will clearly be
correlated ifdEg1dEd.Ed2Eg . This suggests the pres
ence of finite size effects for scales

l ,l c5S ad1ag

ed2eg
D 1/~12v!

.

Only for l @l c can the two paths possibly be statistica
independent. Actually our numerical work could not acce

TABLE I. Energy fluctuation and wandering exponents as
function of D.

d Lmax vg vd ng>nd

2 2046 0.32(1) 0.33(1) 0.65(1)
3 381 0.18(1) 0.18(1) 0.59(1)
4 252 0.08(1) 0.09(1) 0.54(1)
5 155 0.04(2) 0.04(1) 0.51(1)
6 90 0.03(3) 0.03(2) 0.50(1)
v.
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the regimel @l c due to resouces limitations. Our numeric
results show that the correlation between the energies of
two paths is almost constant ind51, and decreases in highe
dimensions. Ford>3 it seems to follow the same curve.

The same effect also manifests itself in the overlap dis
bution Pl (m) for paths of sizel . Here the overlapm is the
fraction of sites which the directed pathd shares with the
nondirected pathg. Pl (m) shows a clear size dependenc
for small l it has a peak atm51, whereas asl increases it
becomes broader and broader. Figure 2~b! shows the average
overlap^m& vs 1/j for different values ofl and D. In di-
mensionsD.3, ^m& seems to converge to zero for largej
~i.e., asl →`).

In order to test the effect of correlation betweeng andd
due to small size, we considered the scaling ofdE andj(t)
considering only paths with overlap in an interv
@m,m1Dm#. However, no systematic dependence
^dEumP@m,m1Dm#& was detected. This suggests that ev
in the absence of the spurious correlation arising from sm
sizesl ,l c , the scaling of the pathsg and d remains the
same, and it therefore supports universality. Even so,
possibility of nonuniversal behavior cannot be excluded
l @l c .
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